
OmniNxt: A Fully Open-source and Compact Aerial Robot
with Omnidirectional Visual Perception

Peize Liu1, Chen Feng1,†, Yang Xu2, Yan Ning1, Hao Xu1,†, and Shaojie Shen1

Fig. 1: The system overview of OmniNxt. The hardware architecture includes: Multi-fisheye camera set (camera), Nxt-FC
(flight controller and IMU), and Nvidia Jeston Orin NX (onboard computation). The software framework consists of two
critical components: Omni-VINS (Sec. III-D) and Omni-Depth (Sec. III-E).

Abstract— Adopting omnidirectional Field of View (FoV)
cameras in aerial robots vastly improves perception ability,
significantly advancing aerial robotics’s capabilities in inspec-
tion, reconstruction, and rescue tasks. However, such sensors
also elevate system complexity, e.g., hardware design, and cor-
responding algorithm, which limits researchers from utilizing
aerial robots with omnidirectional FoV in their research. To
bridge this gap, we propose OmniNxt, a fully open-source aerial
robotics platform with omnidirectional perception. We design a
high-performance flight controller Nxt-FC and a multi-fisheye
camera set for OmniNxt. Meanwhile, the compatible software
is carefully devised, which empowers OmniNxt to achieve
accurate localization and real-time dense mapping with limited
computation resource occupancy. We conducted extensive real-
world experiments to validate the superior performance of
OmniNxt in practical applications. All the hardware and
software are open-access at3, and we provide docker images
of each crucial module in the proposed system. Project page:
https://hkust-aerial-robotics.github.io/OmniNxt.

1Department of Electronic and Computer Engineering, The Hong Kong
University of Science and Technology, Hong Kong, China.

2Division of Emerging Interdisciplinary Areas, The Hong Kong Univer-
sity of Science and Technology, Hong Kong, China.

Email: {pliuan,cfengag,yxuew,yningaa,hxubc}@ust.hk,
eeshaojie@ust.hk
† Corresponding Authors
3https://github.com/HKUST-Aerial-Robotics/OmniNxt

I. INTRODUCTION

In recent years, remarkable advancements in open-source
aerial robotics platforms have led to a surge in practical ap-
plications, e.g., exploration [1], reconstruction [2], and rescue
[3]. However, it becomes evident that existing platforms, like
FLA [4], MRS [5], and Agilicious [6], are challenging for
effectively performing these tasks in increasingly complex
and dynamic environments due to their limited FoV.

Contrary to platforms with limited FoV, the early de-
velopment of aerial robots with omnidirectional FoV by
Gao et al. [7] demonstrates the potential of omnidirectional
FoV in performing the above tasks more robustly and effi-
ciently. As proved by Zhang et al. [8] and Wang et al. [9],
the omnidirectional FoV improves the localization accuracy
in challenging environments. Additionally, omnidirectional
FoV enables minimizing the indirect-controlled yaw rotation
[10] during the flight [10], which enhances the energy
efficiency of downstream tasks like autonomous navigation.

However, the lack of open-source omnidirectional FoV
platforms can be attributed to the following challenges. (1)
Sensor configuration: The standard way to achieve omni-
directional FoV [7] is using the multi-fisheye camera set.

https://hkust-aerial-robotics.github.io/OmniNxt
https://github.com/HKUST-Aerial-Robotics/OmniNxt


Unlike off-the-shelf camera modules, this set requires sub-
stantial efforts in structural design, hardware development,
and meticulous calibration. (2) Algorithm development: To
comprehensively leverage the benefits offered by the omni-
directional FoV, all algorithms, i.e., localization, mapping,
planner, and controller should be adapted for properly ex-
ploiting the increased information. (3) System integration:
Extensive testing and optimization of each component are
essential to ensure stable and reliable performance within
systems constrained by size and computational resources.
System latency, resource occupancy, and overall performance
should be carefully considered and optimized for robust and
stable functionality in real-world scenarios.

To tackle these challenges and ensure platforms are
broadly applicable to the research community, COPE criteria
have been distilled from existing works and anticipated future
challenges to guide the platform design.

• Compact: At the hardware level, sensor components
should be compact to minimize the size and weight
of the platform, thereby improving maneuverability.
Additionally, critical software modules should consume
minimal system resources, allowing a flexible environ-
ment for further tasks and development.

• Open-source: All hardware and software should be
open-source, which facilitates cohesive reproduction,
development, and enhancement by the community.

• Perceptive: Comprehensive information about the sur-
roundings and low-noise measurement should be per-
ceived by sensors such as cameras and IMU. On the
other hand, corresponding algorithms should be capable
of effectively processing and utilizing the input from
sensors to improve the system’s robustness and stability.

• Extendable: The hardware should be developed to allow
seamless interchange and migration across platforms,
thus amplifying the utility of the present design. In
parallel, the software should be modular and easily
updatable to expedite the validation of emerging algo-
rithms and adaptation for subsequent applications.

Following the COPE criteria, we introduce OmniNxt, the
first fully open-source aerial robotics platform with omni-
directional visual perception. OmniNxt boasts a compact
size with exceptional computational resources. Thanks to
our meticulous development, we endow OmniNxt with an
expansive perception range and efficient resource consump-
tion. Thorough evaluations demonstrate the effectiveness
and advanced performance in real-world applications. The
contributions of our system can be summarized as follows:

1) An open-source and compact hardware platform with
omnidirectional FoV: We develop a coin-size yet high-
performance flight controller Nxt-FC, which provides
500 Hz low-noise IMU data for the visual inertial
odometry (VIO). In addition, we develop a multi-
fisheye camera set to support omnidirectional percep-
tion. This set also offers synchronized images to VIO,
where camera drivers and calibration tools are also
provided.

Fig. 2: Typical structures of omnidirectional FoV. Cameras
in the UpDown structure are on the top and bottom of
the platform, facing upwards and downwards. The Corner
structure places cameras on the corners of a plane, covering
an omnidirectional view.

2) An open-source and real-time omnidirectional percep-
tion framework: It consists of two principal compo-
nents, Omni-VINS and Omni-Depth. The former pro-
vides accurate VIO, while the latter facilitates omnidi-
rectional dense mapping. Both are devised as resource-
efficient modules (See Fig. 1), which pave the way for
advanced development in downstream tasks.

3) Extensive real-world experiments are conducted to
evaluate the proposed system thoroughly. Experiments
demonstrate that OmniNxt achieves outperforming lo-
calization accuracy and dependable point cloud quality.
Moreover, autonomous navigation tests in a cluttered
indoor environment validate the practicality of the
proposed platform. Experiments also verify the adapt-
ability of OmniNxt, highlighting its compatibility with
a range of sensors and its ease of modification to suit
diverse applications.

II. RELATED WORKS

A. Omnidirectional Visual Inertial Odometry

According to Zhang et al. [8], the FoV and the placement
of the camera directly impact the odometry accuracy in
different scenarios. An adequately installed camera with ex-
tended FoV enhances the effectiveness of feature extraction
and tracking, contributing to improved odometry accuracy
compared with limited FoV. To realize the omnidirectional
FoV, existing works commonly adopt two typical configu-
rations in structure: UpDown and Corner (Fig. 2). In the
UpDown structure, cameras usually feature 250◦ to 360◦

FoV, while the Corner structure usually utilizes three or
more cameras with 180◦ to 210◦ FoV. Compared with the
Corner structure, the UpDown structure suffers more from
image distortions, while the Corner structure involves more
complex calibration.

Corresponding to the evaluation in [8], systems based on
UpDown structure, such as the one proposed by Wang et al.
[9], demonstrate higher odometry accuracy in indoor envi-
ronments. This can be attributed to the greater probability of
feature extraction and tracking in less distorted areas (center)
of the images. However, their performance tends to be less
favorable in outdoor settings. This discrepancy arises from



Fig. 3: Platforms comparison. The platforms are compared based on their FoV and the ratio of onboard computation power to
the product of size and weight. A higher value on the vertical axis indicates the platform’s ability to perceive the surrounding
environment more comprehensively. On the horizontal axis, a higher value represents a greater computational power available
within a smaller size and weight, indicating a stronger capability of the platform to support downstream tasks.

TABLE I: A comparison of different available consumer and research platforms. We evaluate them in hardware dimensions,
weight, sensor types, perception information types, perception range, and extendability. HW: hardware. SW: software.

Platforms Compact Open-source Perceptive Extendable
HW SW HW SW Visual Info Geometry Info Sensor Type FoV HW SW

DJI MAVIC 3T [11] 380mm 920g - % % ! !
Multi-fisheye

camera set
360◦ % %

Skydio X10 [12] ≈380mm 2110g - % % ! !
Multi-fisheye

camera set
360◦ % %

FLA [4] 450mm ≈2500g Low ! ! ! !
Camera &
2D-LiDAR

≈90◦ ! !

MRS [5] 450mm ≈1500g Low ! ! ! !
Camera &
3D-LiDAR

≈90◦ ! !

LIO Racing
Drone

[13] 330mm ≈1300g Median % % % ! 3D-LiDAR ≈70◦ % !

Agilicious [6] 330mm ≈775g High ! ! ! ! Stereo camera ≈90◦ % !

Fast-250 [14] 250mm ≈1000g Median ! ! ! ! Stereo camera ≈90◦ % !

OmniNxt(Ours) 88.92mm 660g High ! ! ! !
Multi-fisheye

camera set
360◦ ! !

the fact that features are more likely to be extracted and
tracked in the greater distorted areas (margin) when the
system performs outdoors, subsequently introducing more
noise into the estimation of system status.

Works like Omnidirectional DSO [15], based on Corner
structure, achieve higher accuracy in both scenarios because
of the less distorted image input. However, compared with
the feature-based method like VINS [16], the direct method
is unsuitable for agile maneuvering platforms due to its
sensitivity to motion blur and changes in image illumination.

B. Omnidirectional Depth Estimation

Retrieving dense depth information from multiple images
captured by fisheye cameras is challenging due to the signif-
icant distortions. Existing solutions to this problem can be

categorized into direct and indirect methods.

Most direct methods, such as OmniMVS [17], employ
neural networks to obtain dense depth information directly
from the raw images. However, these methods often strug-
gle with generalization across different cameras and can
hardly meet the real-time requirement on resource-limited
platforms.

On the other hand, the indirect methods aim to transfer
the raw images into multiple pairs of stereo images captured
by the virtual pinhole cameras (See Sec. III-E). Gao et al.
[7] leverage semi-global matching (SGBM) to obtain a dense
depth estimation on resource-limited platforms. While Xie et
al. [18] employ a CNN to obtain a denser depth estimation.
Our approach is similar to [18], but we achieve real-time

https://www.skydio.com/x10


inference speed on resource-limited platforms while main-
taining a more flexible structure in realization (Sec. III-E).

C. Available Platforms

Numerous research groups have made valuable contribu-
tions to the community by sharing their design. The design
of these platforms varies greatly depending on the research
topics they address. Based on the COPE criteria, TABLE. I
provides an overview of currently accessible platforms.

Existing platforms like FLA [4] and MRS [5] are designed
for data collection and autonomous navigation in open areas.
These platforms share a similar solution, utilizing a PX4
[19] based flight controller, a CPU-only onboard computer,
mono or stereo cameras, and LiDAR. However, achieving
compactness and lightweight in their design is challenging
due to the introduction of LiDAR to obtain dense map.
On the other hand, the platform, which is designed for
aggressive planning and control, prioritizes maximizing the
thrust weight ratio (TWR). One notable platform in this
category is Agilicious [6]. Different from those platforms
mentioned above, Agilicous [6] achieves compactness and
lightweight by adopting a cramped hardware design, which
allows the platform to have high TWR but makes it hard to
integrate additional sensors. This limitation poses challenges
in accessing a comprehensive surrounding environment, lim-
iting its applicability to future tasks. Besides, commercial
platforms like DJI MAVIC 3T [11] and SKYDIO X10
[12] are not open-source, hindering further development and
algorithm validation. Their large dimensions and weight also
limit the range of applications.

III. OMNINXT PLATFORM

A. System Overview

OmniNxt is designed to be a general open-source aerial
robotics platform. Therefore, we strictly follow the COPE
criteria in hardware and software design.

As shown in Fig. 1, OmniNxt consists of three key
components in hardware: First, We use Nvidia Jetson Orin
NX for the onboard computer, which has an 8-core CPU
running at 2.0 GHz and a GPU with 1024 CUDA cores. CPU
and GPU share the unified 16G RAM. Second, we adopt
a multi-fisheye camera set to capture the omnidirectional
image at 20 Hz. All four cameras are synchronized by one
camera triggering the other three. Last, to further enhance
the robustness of OmniNxt, we develop a low-noise flight
controller, which provides 500 Hz low-noise IMU data.
Besides, the software framework of OmniNxt can be divided
into the following four parts, each serving a specific function:
• Omni-VINS: This module combines the high-frequency

IMU measurements (500 Hz) and the omnidirectional
image (20 Hz) to generate accurate VIO, which is
crucial for mapping, planning, and control modules.
(Sec. III-D)

• Omni-Depth: This module performs real-time omnidi-
rectional dense point cloud generation by processing the
omnidirectional image with its virtual-stereo frontend
and multi-stream-inference backend. (Sec. III-E)

Fig. 4: The calibration pipeline of multi-fisheye camera set.
The numbers indicate the calibration sequence. The letter on
the top left of each box corresponds to the camera index in
Fig. 5.B

• Planner: Based on the Omni-VINS and Omni-Depth,
this module generates the trajectory toward the goal
position following the aerial robotic dynamics. (Sec. III-
F)

• Controller: The trajectory generated from the planner
is converted to a low-level attitude command by this
module and then executed by the flight controller. (Sec.
III-F)

The perception modules (Omni-VINS, Omni-Depth, and
related hardware drivers) in OminNxt occupy 27% CPU and
40% GPU onboard resources, sparing sufficient resources for
the downstream tasks.

B. Nxt-FC

The lack of open-source hardware options in most avail-
able flight controllers presents a significant challenge in fur-
ther development and adaptation on various platforms. To ad-
dress this issue, we design and open-source a flight controller
named Nxt-FC with compact dimensions of 27mm×33mm.
Our flight controller is based on open-source autonomous
pilot firmware PX4 [19]. We develop a high-frequency raw
IMU data stream for robust and accurate VIO. Detailed
information is available on our project page.

C. Multi-fisheye Camera Set Calibration

Calibrating all four fisheye cameras’ intrinsic and extrin-
sic parameters together results in a complex optimization
problem, thus increasing processing time and lowering the
success rate. To address this issue, our pipeline utilizes
tartankalibr [20] in fisheye cameras calibrations and kalibr-
toolbox [21] [22] in virtual pinhole cameras calibrations. The
calibration process is illustrated in Fig. 4.

Initially, we calibrate the intrinsic parameters of each
fisheye camera. Once the projection error of each camera
is less than 0.5 pixels, we proceed to calibrate the extrinsic
parameters between adjacent cameras as well as between
cameras and IMU.

After having established the intrinsic and extrinsic pa-
rameters of the multi-fisheye camera set, we undistort the
image based on the cylindrical camera model (Sec. III-D)

https://hkust-aerial-robotics.github.io/OmniNxt


to generate virtual stereo pairs (Fig. 5.C) and calibrate both
intrinsic and extrinsic parameters of virtual stereo cameras.
The transformation between fisheye and virtual stereo cam-
eras is further explained in Sec. III-E.

Our pipeline reduces the calibration time by concurring the
calibration process and raises the success rate by allowing the
calibration process to resume from the failed case quickly.

D. Omni-VINS

Omni-VINS is optimized for onboard real-time perfor-
mance based on our previous work D2SLAM [23]. The
significant distortion in fisheye images poses challenges in
feature extraction and feature tracking, particularly when
using CNN-based methods that are trained with images gath-
ered by the pinhole camera. To address this issue, we employ
the MEI model [24] for the intrinsic parameters of raw
fisheye cameras and radial-tangential models to formulate
the distortion. First, We undistort the fisheye camera image
with the cylindrical camera model. The cylindrical camera
model [25] can be written as:uv

1

 =

fφ 0 u0
0 fy v0
0 0 1

 φ
Y/ρ
1

 ,
φ = atan2(X,Z),

ρ =
√
X2 + Z2,

(1)

where fφ and fy are the focal length. This model offers
the advantage of representing virtual cameras with adjustable
FoV and rotations relative to the original camera.

In our implementation, we set fφ to 190◦

W (W is the width
of the image) to eliminate the unexposed margin of the
image. To ensure the consistency of the undistorted image,
we set fy equal to fφ.

We then perform feature extraction and tracking based
on the cylindrical undistorted image. Omni-VINS heritages
the hybrid feature extraction strategy developed in D2VINS
[23] but changes the tracking method from Superglue [26]
to Lucas-Kanade (LK) [27] method to minimize the GPU
occupancy and accelerates the matching process. We perform
feature tracking in both previous and latest frames and among
adjacent cameras’ frames.

Our previous works [16] and [7] have thoroughly formu-
lated the visual-inertial problem. The full state vector in the
sliding window is defined as:

X = [x0, x1, ..., xm, x
b
C0
, xbC1

, ..., xbCn
, λ0, λ1, ..., λl],

xi = [pWbi , v
W
bi , q

W
bi , b

b
a, b

b
g], k ∈ [0,m],

xbcj = [pbcj , q
b
cj ], j ∈ [0, n],

(2)

where m is the total number of keyframes, λi is the inverse
depth of the ith feature from its first observation, and n is
the number of fisheye cameras. The visual inertial odometry
problem in Omni-D2VINS is defined as:

Fig. 5: Illustration of virtual-stereo frontend. A: the Z axis
of virtual cameras (Orange and Blue) and the fisheye camera
(Black). B: the placement of four fisheye cameras. C: shows
the virtual stereo pairs.

min
X

{
‖rp −HpX‖2 +

∑
K∈B

∥∥∥rB(ẑbkbk+1
,X )

∥∥∥2
P

bk
bk+1

+

∑
(l,j)∈C

∥∥rC(ẑcjl ,X )∥∥2P cj
l

}
(3)

We use Ceres Solver [28] for solving this least squares
problem.

E. Omni-Depth

Omni-Depth is designed with a modular structure consist-
ing of a virtual-stereo frontend and a multi-stream-inference
backend to ensure the generalization in various stereo-
matching techniques.

The virtual-stereo frontend is demonstrated in Fig. 5.C,
where the fisheye camera images are undistorted into two
perpendicularly placed virtual cylindrical cameras. The FoV
of virtual cameras is set to 100◦. The extrinsic parameters
of the virtual pinhole cameras can be defined as follows:

Tvcam =

[
Rvcam
fisheye 0

0 1

] [
Rfisheye tfisheye

0 1

]
,

Rvcaml

fisheye = Ry(−
1

4
π),

Rvcamr

fisheye = Ry(
1

4
π),

(4)

where vcaml represents the left virtual camera, while vcamr

represents the right one. Since the FoV of these two virtual
cameras is close to the standard pinhole camera, we can
calibrate them with the pinhole camera model.

In the backend of Omni-Depth, we employ CNN to
estimate the disparity of each virtual stereo pair because of
its more robust performance in the textureless environment.
The Omni-Depth is flexible in accommodating different
CNN models in the backend. This allows easy adaptation
to meet various platforms’ accuracy and inference speed
requirements. See Sec. IV-B for the implementation details.

F. Planner and Controller

Combining precise and reliable odometry from Omni-
VINS and dense point cloud from Omni-Depth, OmniNxt
offers extensive support for various tasks. Benefited from The



Fig. 6: Omni-VINS evaluation. Infinity, Circle, and Random are the three testing trajectories. W/O means flight without
rotating the yaw to the speed direction. gt is the ground truth. W means flight while the yaw direction follows the speed
direction. The data collection platform and testing environment are shown in Hardware settings. (Sec. IV-A)

omnidirectional perception, yaw rotation can be minimized
during the flight, which simplifies the scheme of the trajec-
tory planning in autonomous navigation (Sec. IV-C ) while
increasing the accuracy of VIO (Sec. IV-A). The command
from the tasks level is fed into the controller module and then
converted into the desired attitude command in MAVROS
format. For efficient control, We utilize the open-source Px4-
Controller [14].

IV. EXPERIMENTS

We conduct a comprehensive analysis of OmniNxt’s per-
formance in VIO accuracy (Sec. IV-A) and omnidirectional
dense map quality (Sec. IV-B) in the real world. In Sec. IV-C,
we demonstrate OmniNxt’s ability to autonomously navigate
in a narrow indoor environment. In Sec. IV-D, we also adapt
OmniNxt with other common visual sensors to ensure its
compatibility.

A. Omni-VINS Evaluation

We respectively equip OmniNxt with the multi-fisheye
camera set and Intel D435 [29] stereo camera to compare
the VIO accuracy of omnidirectional VINS (Omni-VINS)
and limited-FoV VINS (Stereo-VINS). The ground truth
is collected by Opti-Track. In this evaluation, we design
three trajectories: Infinity, Cirecle, and Random. In Infinity
and Cirecle cases, OmniNxt follows the trajectory in two
manners. One moves without rotating the yaw to the speed
direction, and another moves while the yaw follows the speed
direction. In the Random case, the human pilot controls
the robots, randomly performing dashing, spinning, and
hovering. Our test environment poses significant challenges

Fig. 7: HITNET inference speed. Batch 1: The inference time
of one group of data. Batch 4: The inference time of four
groups of data concatenated on batch dimension. Stream 4:
The inference time of four groups of data in multi-stream.

to VIO because of the black wall on the right. The testing
trajectories and environment are illustrated in Fig. 6.

Omni-VINS and Stereo-VINS are configured with the
same feature extraction and tracking numbers. The sliding
window size is set to be 10. Both use good-feature-to-
track features and the LK method for tracking. The extrinsic
parameters of the camera and IMU in Stereo-VINS are
calibrated by Kalibr [22].

Omni-VINS benefits from the omnidirectional FoV,
achieving more robust and accurate VIO in all cases. For
the root mean squared error (RMSE) of absolute trajectory
error (ATE), see TABLE. II (Our evaluate method and tools
based on EVO [30]).



Fig. 8: Omni-Depth evaluation. A: the point cloud collected by LIVOX Mid360. B: the testing environment. C and D:
the detailed point cloud generated from the virtual stereo pair DA and CD (grid is 1m) as illustrated in Fig. 5.C. E: The
overview of the point cloud generated from Omni-Depth. (Sec. IV-B)

Fig. 9: Real-world autonomous navigation tests. Left: OmniNxt autonomously flies without rotating the yaw to the speed
direction. Right: the executed trajectory and voxel map. (Sec. IV-C)

TABLE II: Localization accuracy comparison (metric:
RMSE).

Omni-VINS Stereo-VINS Trajectory Length
Infinity(W) 0.084m 0.110m 70.1m
Infinity(W/O) 0.043m 0.052m 70.1m
Circle(W) 0.086m 0.268m 60.2m
Circle(W/O) 0.025m 0.050m 43.0m
Random(W) 0.098m 0.460m 60.0m

B. Real-time Depth Estimation

In practice, we use the pre-trained HITNET [31] model
with the input dimension (BWHC) 1×320×240×2 in the
backend to balance the estimation quality and inference
speed. We accelerate the inference by utilizing Tensor Core
and FP16 quantization. The inference time of one virtual
stereo drops from 160 ms to 50 ms. Since Omni-Depth
involves four sets of inferences for each frame, the sequential
execution of these inferences last 200ms. To address this,
we explore two approaches to parallelize the inference pro-
cedure. Firstly, we concatenate the four groups of input data
along the batch dimension, resulting in an input dimension
of 4×320×240×2. However, this approach does not improve
the inference time. Then, we adopt NVIDIA multi-stream,
which allows four sets of inference to be executed concur-

rently. Subsequently, the total inference time decreased from
200 ms to 62 ms. Fig. 7 demonstrates the inference speed of
HINTET in different manners. The Omni-Depth can run at
15 Hz onboard, providing a real-time dense map. The bias
of the dense map is around 10 cm. (See Fig. 8E)

C. Real-world Autonomous Navigation Tests

To demonstrate the practicability of OmniNxt, we conduct
autonomous navigation tests in a cluttered indoor environ-
ment. Specifically, we modify the trajectory generation strat-
egy in ego-planner [32] by removing the yaw angle trajectory
optimization thanks to the omnidirectional perception. This
modification enhances the accuracy of localization (as shown
in Sec.IV-A) and improves the quality of the dense map
by reducing the image blur caused by yaw rotation. This
improvement ultimately enhances the efficiency and safety of
trajectory planning. For the experiment, we set the maximum
speed to 1.0 m/s and the maximum acceleration to 0.6 m/s2.
We represent the surrounding environments with volumetric
mapping. All the modules are running onboard. (See Fig. 9)

D. Adaptation of OmniNxt

OmniNxt boasts sophisticated hardware designs that fa-
cilitate the swift interchange of visual sensors. Presently, we



offer two additional versions of sensor configurations: Stereo
(Intel D435 [29]) and RGB-D (Intel L515 [33]), as depicted
in Fig. 10. We have conducted real-world flight experiments
to demonstrate their practicality (Stereo in Sec. IV-A, and
RGB-D in H2-Mapping [34]). Detailed information is avail-
able on our project page.

Fig. 10: OmniNxt carries different types of visual sensors.
Here, we demonstrate the installation of omnidirectional,
stereo, and RGB-D cameras.

V. CONCLUSION AND FUTURE WORK

In this paper, we present OmniNxt, a fully open-source and
compact aerial robotics platform with omnidirectional visual
perception. OmniNxt demonstrates exceptional performance
in localization and dense mapping, with limited size and
onboard computational resources. We develop Nxt-FC, a
coin-size yet high-performance flight controller, which is
general to the community. Besides, a multi-fisheye cam-
era set is designed to support omnidirectional perception.
Based on our devised hardware, we also propose a real-
time omnidirectional perception framework, including Omni-
VINS and Omni-Depth. Comprehensive real-world exper-
iments demonstrated the superiority and practicability of
OmniNxt. In the future, we aim to improve the capability
of omnidirectional visual perception to enable exceptional
performance in increasingly demanding environments.

REFERENCES

[1] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “FUEL: Fast UAV
Exploration using Incremental Frontier Structure and Hierarchical
Planning,” 2020.

[2] C. Feng, H. Li, J. Jiang, X. Chen, S. Shen, and B. Zhou, “FC-Planner:
A Skeleton-guided Planning Framework for Fast Aerial Coverage of
Complex 3D Scenes,” arXiv preprint arXiv:2309.13882, 2023.

[3] E. Lygouras, A. Gasteratos, K. Tarchanidis, and A. Mitropoulos,
“ROLFER: A fully autonomous aerial rescue support system,” Mi-
croprocessors and Microsystems, vol. 61, pp. 32–42, 2018.

[4] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni,
K. Saulnier, K. Sun, A. Zhu, J. Delmerico, K. Karydis, N. Atanasov,
G. Loianno, D. Scaramuzza, K. Daniilidis, C. J. Taylor, and V. Kumar,
“Fast, autonomous flight in GPS-denied and cluttered environments,”
Journal of Field Robotics, vol. 35, no. 1, pp. 101–120, 2018.

[5] T. Baca, M. Petrlik, M. Vrba, V. Spurny, R. Penicka, D. Hert,
and M. Saska, “The MRS UAV System: Pushing the Frontiers of
Reproducible Research, Real-world Deployment, and Education with
Autonomous Unmanned Aerial Vehicles,” Journal of Intelligent and
Robotic Systems, vol. 102, no. 1, Apr. 2021.

[6] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld,
T. Laengle, G. Cioffi, Y. Song, A. Loquercio, and D. Scaramuzza, “Ag-
ilicious: Open-source and open-hardware agile quadrotor for vision-
based flight,” Science Robotics, vol. 7, no. 67, p. eabl6259, 2022.

[7] W. Gao, K. Wang, W. Ding, F. Gao, T. Qin, and S. Shen, “Autonomous
aerial robot using dual-fisheye cameras,” Journal of Field Robotics,
vol. 37, no. 4, pp. 497–514, 2020.

[8] Z. Zhang, H. Rebecq, C. Forster, and D. Scaramuzza, “Benefit of
large field-of-view cameras for visual odometry,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), 2016,
pp. 801–808.

[9] Z. Wang, K. Yang, H. Shi, P. Li, F. Gao, and K. Wang, “LF-VIO:
A Visual-Inertial-Odometry Framework for Large Field-of-View Cam-
eras with Negative Plane,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2022.

[10] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE International Conference
on Robotics and Automation, 2011, pp. 2520–2525.

[11] DJI. [Online]. Available: https://enterprise.dji.com/zh-tw/
mavic-3-enterprise/

[12] SKYDIO. [Online]. Available: https://www.skydio.com/x10/
[13] D. He, W. Xu, N. Chen, F. Kong, C. Yuan, and F. Zhang, “Point-

LIO: Robust High-Bandwidth Light Detection and Ranging Inertial
Odometry,” Advanced Intelligent Systems, vol. 5, no. 7, p. 2200459,
2023.

[14] Fast-LAB. [Online]. Available: https://github.com/ZJU-FAST-Lab/
Fast-Drone-250

[15] H. Matsuki, L. von Stumberg, V. Usenko, J. Stückler, and D. Cre-
mers, “Omnidirectional DSO: Direct Sparse Odometry with Fisheye
Cameras,” CoRR, vol. abs/1808.02775, 2018.

[16] T. Qin, P. Li, and S. Shen, “Vins-mono: A robust and versatile monoc-
ular visual-inertial state estimator,” IEEE Transactions on Robotics,
vol. 34, no. 4, pp. 1004–1020, 2018.

[17] C. Won, J. Ryu, and J. Lim, “End-to-End Learning for Omnidirec-
tional Stereo Matching with Uncertainty Prior,” IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 2020.

[18] S. Xie, D. Wang, and Y. Liu, “Omnividar: Omnidirectional depth
estimation from multi-fisheye images,” in 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR). Los Alamitos,
CA, USA: IEEE Computer Society, jun 2023, pp. 21 529–21 538.

[19] L. Meier, D. Honegger, and M. Pollefeys, “Px4: A node-based
multithreaded open source robotics framework for deeply embedded
platforms,” 2015 IEEE International Conference on Robotics and
Automation (ICRA), pp. 6235–6240, 2015.

[20] B. P. Duisterhof, Y. Hu, S. H. Teng, M. Kaess, and S. Scherer,
“TartanCalib: Iterative Wide-Angle Lens Calibration using Adaptive
SubPixel Refinement of AprilTags,” 2022.

[21] P. Furgale, J. Rehder, and R. Siegwart, “Unified temporal and spatial
calibration for multi-sensor systems,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013, pp. 1280–1286.

[22] J. Rehder, J. Nikolic, T. Schneider, T. Hinzmann, and R. Siegwart,
“Extending kalibr: Calibrating the extrinsics of multiple IMUs and of
individual axes,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), 2016, pp. 4304–4311.

[23] H. Xu, P. Liu, X. Chen, and S. Shen, “D2SLAM: Decentralized
and Distributed Collaborative Visual-inertial SLAM System for Aerial
Swarm,” 2023.

[24] C. Mei and P. Rives, “Single view point omnidirectional camera
calibration from planar grids,” in Proceedings 2007 IEEE International
Conference on Robotics and Automation, 2007, pp. 3945–3950.

[25] E. Plaut, E. B. Yaacov, and B. E. Shlomo, “3D Object Detection from
a Single Fisheye Image Without a Single Fisheye Training Image,”
2021.

[26] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Super-
Glue: Learning Feature Matching with Graph Neural Networks,” 2020.

[27] B. Lucas and T. Kanade, “An iterative image registration technique
with an application to stereo vision (ijcai),” vol. 81, 04 1981.

[28] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,” 10 2023.
[Online]. Available: https://github.com/ceres-solver/ceres-solver

[29] INTEL. [Online]. Available: https://www.intelrealsense.com/
depth-camera-d435/

[30] M. Grupp, “evo: Python package for the evaluation of odometry and
SLAM.” https://github.com/MichaelGrupp/evo, 2017.

[31] V. Tankovich, C. Häne, Y. Zhang, A. Kowdle, S. Fanello, and
S. Bouaziz, “HITNet: Hierarchical Iterative Tile Refinement Network
for Real-time Stereo Matching,” 2023.

[32] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “EGO-Planner: An
ESDF-free Gradient-based Local Planner for Quadrotors,” 2020.

[33] INTEL. [Online]. Available: https://www.intelrealsense.com/
lidar-camera-l515/

[34] C. Jiang, H. Zhang, P. Liu, Z. Yu, H. Cheng, B. Zhou, and S. Shen,
“H2-mapping: Real-time dense mapping using hierarchical hybrid
representation,” IEEE Robotics and Automation Letters, vol. 8, no. 10,
pp. 6787–6794, 2023.

https://hkust-aerial-robotics.github.io/OmniNxt
https://enterprise.dji.com/zh-tw/mavic-3-enterprise/
https://enterprise.dji.com/zh-tw/mavic-3-enterprise/
https://www.skydio.com/x10/
https://github.com/ZJU-FAST-Lab/Fast-Drone-250
https://github.com/ZJU-FAST-Lab/Fast-Drone-250
https://github.com/ceres-solver/ceres-solver
https://www.intelrealsense.com/depth-camera-d435/
https://www.intelrealsense.com/depth-camera-d435/
https://github.com/MichaelGrupp/evo
https://www.intelrealsense.com/lidar-camera-l515/
https://www.intelrealsense.com/lidar-camera-l515/

	Introduction
	Related Works
	Omnidirectional Visual Inertial Odometry
	Omnidirectional Depth Estimation
	Available Platforms

	OmniNxt Platform
	System Overview
	Nxt-FC
	Multi-fisheye Camera Set Calibration
	Omni-VINS
	Omni-Depth
	Planner and Controller

	Experiments
	Omni-VINS Evaluation
	Real-time Depth Estimation
	Real-world Autonomous Navigation Tests
	Adaptation of OmniNxt

	Conclusion and Future Work
	References

